

# ANALYSIS OF TWO ECHELON INVENTORY SYSTEM WITH JOINT ORDERING POLICY

**R. KARTHIKEYAN<sup>1</sup> & K. KRISHNAN<sup>2</sup>** 

<sup>1</sup>Lecturer in Mathematics, Govt. Polytechnic College, Aundipatty, Tamil Nadu, India <sup>2</sup>Assistant Professor, PG & Research Department of Mathematics, Cardamom Planters' Association College, Bodinayakanur, Tamil Nadu, India

# ABSTRACT

Inventory is essential for the efficient running of any business. Single location inventory system is considered by many researchers. This paper deals with two echelon inventory system with handling two products having joint ordering policy. The demand for the products follows independent poison distributions at retailer and distributor node. The items are supplied to the retailers from the distribution center (DC) administrated with exponential lead time having parameter  $\mu$  (>0). The joint probability disruption of the inventory levels of two products at retailer and the supplier are obtained in the steady state case. Various system performance measures are derived and the long run total expected inventory cost rate is calculated. Several instances of numerical examples, which provide insight into the behavior of the system, are presented.

KEYWORDS: Continuous Review Inventory System, Two-Echelon, Joint Ordering Policy

# **1. INTRODUCTION**

Inventory control system in two-echelon or multi echelon has been considered by many researchers. Most of the papers the authors concentrate on periodic review inventory system. A first quantitative model to find an optimal (s, S) inventory policies for single item at single location is considered by Veinott and Wagner[10]. Thangaraj and Ramanarayanan[9] develop an inventory model with two re-order levels and random lifetime. Gross and Harris [7] considered the inventory system with state dependent lead times. All the above papers deals only with single location inventory system. This paper deals with two echelon inventory system(retailer –lower echelon, distributor – higher echelon) handling two different products supplied by the same distributor.

Anbazhagan and Arivarignan [1] have analyzed two commodity inventory system under various ordering policies. Yadavalli et. al., [11] have analyzed a model with joint ordering policy and varying order quantities. Yadavalli et. al., [12] have considered a two commodity substitutable inventory system with Poisson demands and arbitrarily distributed lead time.

In a very recent paper, Anbazhagan et. al. [2] considered analysis of two commodity inventory system with compliment for bulk demand in which, one of the items for the major item, with random lead time but instantaneous replenishment for the gift item are considered. The lost sales for major item is also assumed when the items are out of stock. The above model is studied only at single location(Lower echelon). We extend the same in to multi-echelon structure (Supply Chain)with joint ordering policy. The rest of the paper is organized as follows. The model formulation is described in section 2, along with some important notations used in the paper. In section 3, steady state analysis are done:

Section 4 deals with the derivation of operating characteristics of the system. In section 5, the cost analysis for the operation. Section 6 provides Numerical examples and sensitivity analysis.

#### 2. MODEL

#### 2.1. The Problem Description

The inventory control system considered in this paper is defined as follows. We assume that finished products are supplied from warehouse to distribution centre (DC) which adopts (0, M) replenishment policy then the product is supplied to retailer (R) who adopts ( $s_i$ ,  $Q_i$ ) policy. The demands at retailer node follows independent Poisson distribution with rate  $\lambda_i$  (i = 1, 2). The items are supplied to the retailers in packs of Q (Q = Q<sub>1</sub>+Q<sub>2</sub>) where Q<sub>i</sub> (= S<sub>i</sub>-s<sub>i</sub>) from the distribution center (DC) administrated with exponential lead time having parameter  $\mu$  (>0). The direct demand at distributor node follows Poisson distribution with rate  $\lambda_D$ . The replenishment of items in terms of pockets is made from WH to DC is instantaneous. Demands that occur during the stock out periods are assumed to be lost sales. In this model the maximum inventory level at retailer node S<sub>i</sub> is fixed and he reorder level is fixed as s<sub>i</sub> for the i-th commodity and the ordering policy is to place order for Q<sub>i</sub> (= S<sub>i</sub>-s<sub>i</sub>) items (i = 1, 2) when both the inventory levels are less than or equal to their respective reorder levels. The maximum inventory level at DC is M (M = nQ). The joint probability distribution for both commodities is obtained in steady state cases.

The optimization criterion is to minimize the total cost rate incurred at all the location subject to the performance level constrains. According to the assumptions the on hand inventory levels at all the nodes follows a random process.

#### 2.2. Analysis

Let  $I_i(t)$ , (i = 1, 2,3) denote the on-hand inventory levels for commodity-1, commodity-2 at retailer node and Distribution Centre (DC) respectively at time t+. From the assumptions on the input and output processes,  $I(t) = \{I_i(t); t \ge 0\}$ (i = 1, 2,3) is a Markov process with state space

$$E = \begin{cases} (i, k, m) / i = S_1, (S_1 - 1), \dots, s_1, (s_1 - 1), \dots, 2, 1, 0, \\ k = S_2, (S_2 - 1), \dots, s_2, (s_2 - 1), \dots, 2, 1, 0, \\ m = nQ, (n-1)Q, \dots, Q \end{cases}$$

Since E is finite and all its states are recurrent non-null,  $I(t) = \{ I_i(t); t \ge 0 \}$  is an irreducible Markov process with state space E and it is an ergodic process. Hence the limiting distribution exists and is independent of the initial state. The infinitesimal generator of this process

$$R = (a(i,k,m:j,l,n))_{(i,k,m),(j,l,n) \in E}$$

can be obtained from the following arguments.

- The arrival of a demand for commodity-1 at retailer node makes a state transition in the Markov process from
   (i, k, m) to (i-1, k, m) with intensity of transition λ<sub>1</sub>.
- The arrival of a demand for commodity-2 at retailer node makes a state transition in the Markov process from
   (i, k, m) to (i, k-1 m) with intensity of transition λ<sub>2</sub>.

- The arrival of a demand at distributor node makes a state transition in the Markov process from (i, k, m) to (i, k m-Q) with intensity of transition  $\lambda_{D}$ .
- Joint Replenishment of inventory for commodity-1 and commodity-2 at retailer node makes a state transition in the Markov process from (i, k, m) to (i+Q<sub>1</sub>, k+Q<sub>2</sub>, m-Q) with intensity of transition  $\mu$  .where Q = Q<sub>1</sub>+Q<sub>2</sub>

The infinitesimal generator R is given by

$$\mathbf{R} = \begin{pmatrix} \mathbf{A} & \mathbf{B} & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{A} & \mathbf{B} & \cdots & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{A} & \cdots & \mathbf{0} & \mathbf{0} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{A} & \mathbf{B} \\ \mathbf{B} & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{A} \end{pmatrix}$$

The entities of matrix R are given by

$$\begin{bmatrix} R \end{bmatrix}_{pxq} = \begin{cases} A & \text{if } p = q & ; p = nQ, (n-1)Q, \dots, 3Q, 2Q. \\ B & \text{if } p = q+Q & ; p = nQ, (n-1)Q, \dots, 3Q, 2Q. \\ B & \text{if } p = q-(n-1)Q & ; p = Q. \\ 0 & \text{otherwise} \end{cases}$$

The sub matrices of matrix R are given by

$$\begin{bmatrix} A \end{bmatrix}_{pxq} = \begin{cases} A_1 & \text{if } p = q & ; p = S_2, (S_2 - 1), (S_2 - 2), \dots, (s_2 + 1). \\ A_2 & \text{if } p = q + Q & ; p = S_2, (S_2 - 1), (S_2 - 2), \dots, 1. \\ A 3 & \text{if } p = q & ; p = s_2, (s_2 - 1), ((s_2 - 2), \dots, 1. \\ A 4 & \text{if } p = q & ; p = 0 \\ 0 & \text{otherwise} \end{cases}$$

$$[B] = \begin{cases} \mu & \text{if } p = q + Q_2 ; q = s_2 , (s_2 - 1), \dots, 1, 0 \\ 0 & \text{otherwise} \end{cases}$$

The sub matrices of matrix A are given by

$$A_{1} = \begin{cases} \lambda_{1} & \text{if } p = q-1 \text{ ; } q = 1,2, \dots, S_{1} \\ -(\lambda_{1} + \lambda_{2} + \lambda_{D}) \text{ if } p = q-1 \text{ ; } q = 1,2, \dots, S_{1} \\ -(\lambda_{2} + \lambda_{D}) & \text{if } p = q \text{ ; } q = 0 \\ 0 & \text{otherwise} \end{cases}$$

45

$$\begin{split} A_{2} &= \begin{cases} \lambda_{2} & \text{if } p = q\text{-}1 \text{ ; } q = 1,2, \dots, S_{1} \\ 0 & \text{otherwise} \end{cases} \\ A_{3} &= \begin{cases} \lambda_{1} & \text{if } p = q\text{-}1 \text{ ; } q = 1,2, \dots, S_{1} \\ -(\lambda_{1} + \lambda_{2} + \lambda_{D} + \mu) \text{ if } p = q\text{-}1 \text{ ; } q = 1,2, \dots, S_{1} \\ -(\lambda_{2} + \lambda_{D} + \mu) & \text{if } p = q \text{ ; } q = 0 \\ 0 & \text{otherwise} \end{cases} \\ A_{4} &= \begin{cases} \lambda_{1} & \text{if } p = q\text{-}1 \text{ ; } q = 1,2, \dots, S_{1} \\ -(\lambda_{1} + \lambda_{2} + \lambda_{D} + \mu) & \text{if } p = q\text{-}1 \text{ ; } q = 1,2, \dots, S_{1} \\ -(\mu + \lambda_{D}) & \text{if } p = q \text{ ; } q = 0 \\ 0 & \text{otherwise} \end{cases} \end{split}$$

#### 4.2.3 Transient Analysis

Define the transient probability function

 $p_{(i, k, m)}(j, l, n:t) = p_r \{(I_1(t), I_2(t), I_3(t)) = (j, l, n) \mid (I_1(0), I_2(0), I_3(0)) = (i, k, m)\}.$ 

The transient matrix for  $t \ge 0$  is of the form  $P(t) = (p_{(i, k, m)}(j, l, n : t))_{(i, k, m)(j, l, n)\in E}$  satisfies the Kolmogorov-forward equation P'(t) = P(t).R, where R is the infinitesimal generator of the process  $\{I(t), t \ge 0\}$ . From the above equation, together with initial condition P(0) = I, the solution can be express of the form  $P(t) = P(0)e^{Rt} = e^{Rt}$ , where the matrix expansion in power series form is

$$e^{Rt} = I + \sum_{n=1}^{\infty} \frac{R^n t^n}{n!}.$$

#### 4.2.4 Steady State Analysis

The structure of the infinitesimal matrix R reveals that the state space E of the Markov process  $\{I(t); t \ge 0\}$  is finite and irreducible. Let the limiting probability distribution of the inventory level process be

$${}^{\mathrm{m}}\Pi_{i}^{\mathrm{k}} = \underset{t \to \infty}{\lim} \operatorname{Pr}\left\{ \left( I_{1}(t), I_{2}(t), I_{D}(t) \right) = \left( i, k, m \right) \right\},$$

where  ${}^{m}\Pi_{i}^{k}$  is the steady state probability that the system be in state (i,k,m), (Cinlar [5]).

Let  $\Pi = ({}^{nQ}\Pi, {}^{(n-1)Q}\Pi, {}^{(n-2)Q}\Pi, {}^{2Q}\Pi, {}^{Q}\Pi.)$  denote the steady state probability distribution, where  ${}^{jQ}\Pi = (\Pi_{S}^{k}, \Pi_{S-1}^{k}, ..., \Pi_{1}^{k}, \Pi_{0}^{k})$  for j = 1, 2 ... n and k = 1, 2, ..., S for the system under consideration. For each (i,k,m),  ${}^{m}\Pi_{i}^{k}$  can be obtained by solving the matrix equation  $\Pi R = 0$ 

Since the state space is finite and R is irreducible, the stationary probability vector  $\Pi$  for the generator R always

#### Analysis of two Echelon Inventory System with Joint Ordering Policy

exists and satisfies

## ΠR=0 and Πe=1

The vector  $\Pi$  can be represented by

$$\Pi = (\Pi^{\langle Q1, Q2 \rangle}, \Pi^{\langle 2Q1, 2Q2 \rangle}, \Pi^{\langle 3Q1, 3Q2 \rangle}, \dots, \Pi^{\langle n1Q1, n2Q2 \rangle})$$

Now the structure of R shows, the model under study is a finite birth death model in the Markovian environment. Hence we use the Gaver algorithm for computing the limiting probability vector. For the sake of completeness we provide the algorithm here.

#### 4.2.5 Algorithm

1. Determine recursively the matrix Dn,  $0 \le n \le N$  by using

$$D0 = A_0$$

$$Dn = A_n + B_n (-D_{n-1}^{-1}) C, n = 1, 2, .... K$$

2. Slove the system

$$\Pi^{}D_N = 0$$

3. Compute recursively the vector  $\Pi^{<n>}$ ,  $n = N - 1, \dots, 0$  using

$$\Pi < n > = \Pi^{< n+1 >} B_{n+1}(-D_n^{-1}), n = n - 1, \dots, 0$$

4. Re-normalize the vector  $\Pi$ , using

 $\Pi e = 1.$ 

## 4.2.6. Operating Characteristics

In this section, we derive some important system performance measures.

# (a) Mean Inventory Level

Let  $IL_{R1}$  and  $IL_{R2}$  denote the expected inventory level in the steady state at retailer node for the commodity-1 and commodity-2, and  $IL_D$  denote the expected inventory level at distribution centre. They are defined as

$$IL_{R1} = \sum_{m=Q}^{nQ} \sum_{k=0}^{*} \sum_{i=0}^{S_1} \sum_{i=0}^{S_1} i\Pi^{<<>>}$$
(4.1)

$$IL_{R2} = \sum_{m=Q}^{nQ} \sum_{k=0}^{*} \sum_{i=0}^{S_1} \sum_{k=0}^{S_1} k \Pi^{<<>>}$$
(4.2)

R. Karthikeyan & K. Krishnan

$$IL_{D} = \sum_{m=Q}^{nQ} \sum_{k=0}^{*} \sum_{i=0}^{S_{1}} m\Pi^{<<>>}; Q = Q_{1} + Q_{2}$$
(4.3)

## (b) Mean Reorder Rate

Consider the reorder events  $\beta_R$  for both commodities at retailer node and  $\beta_D$  of at distribution centre. It is observe that  $\beta_D$  event occur whenever the inventory level at DC node reaches 0 whereas the event  $\beta_R$  occurs whenever the inventory level at retailer node drops to either  $(s_1, s_2)$  or  $(s_1, j), j < s_2$  or  $(i, s_2), i < s_1$ .

The mean reorder rate at retailer node and distribution centre are given by

$$B_{R} = \sum_{m=Q}^{nQ} \left( \sum_{k=0}^{s_{2}} (\lambda_{1}) \Pi^{<<<>>>} + \sum_{i=0}^{s_{1}} (\lambda_{2}) \Pi^{<<<>>} \right)$$

$$B_{D} = \sum_{k=0}^{s_{2}} \sum_{i=0}^{s_{1}} (\mu + \lambda_{D}) \Pi^{<<<>>>}$$

$$(4.4)$$

#### (c) Mean Shortage Rate

Shortage occurs only at retailer node and the mean shortage rate at retailer is denoted by  $\alpha_R$  which is given by

$$\alpha_{R} = \sum_{m=Q}^{nQ} * \left( \sum_{k=0}^{S_{2}} (\lambda_{1}) \Pi < << 0, k, m >>> + \sum_{k=0}^{S_{1}} (\lambda_{2}) \Pi < << i, 0, m >>> \right)$$
(4.6)

#### 4.2.7 Cost Analysis

In this section we analyze the cost structure for the proposed models by considering the minimization of the steady state total expected cost per time.

The long run expected cost rate for the model is defined to be

$$C(s,Q) = h_{R1} IL_{R1} + h_{R2} IL_{R2} + h_D IL_D + k_r B_R + k_D B_D + g_R \alpha_R$$
(4.7)

where

- $\mathbf{h}_{R1}$ ,  $\mathbf{h}_{R2}$ , and  $\mathbf{h}_{D}$  are the holding cost per unit of item of Commodity- 1, Commodity-2 at retailer node and holding cost per unit items (Q items,  $Q = Q_1 + Q_2$ ) at distribution centre respectively per unit time.
- IL<sub>R1</sub>, IL<sub>R2</sub>, and IL<sub>D</sub> are the inventory level of Commodity- 1, Commodity- 2 at retailer node and inventory level at distribution centre respectively per unit time.
- K<sub>r</sub>, and K<sub>D</sub> are the Fixed ordering cost at retailer node distribution centre respectively.
- $B_R$  and  $B_D$  are the mean reorder rate at retailer node and distribution centre.
- $\alpha_{\mathbf{R}}$  is the mean shortage rate at retail node.

•  $\mathbf{g}_{\mathbf{R}}$  is the shortage cost per unit shortage at retailer node.

Although, we have not proved analytically the convexity of the cost function  $TC(s_b, s_2 Q)$ , our experience with considerable number of numerical examples indicates that  $TC(s_b, s_2 Q)$  for fixed Q to be convex in s. In some cases, it turned out to be an increasing function of s. Hence, we adopted the numerical search procedure to determine the optimal values s\*, consequently, we obtain optimal n\*. For large number of parameters, our calculation of  $TC(s_b, s_2 Q)$  revealed a convex structure for the same.

## **5. NUMERICAL ILLUSTRATION**

In the section the problem of minimizing the long run total expected cost per unit time under the following cost structure is considered for discussion. The optimum values of the system parameters  $s_1$  and  $s_2$  are obtained and the sensitive analysis is also done for the system.

The results we obtained in the steady state case may be illustrated through the following numerical example,

 $S_1=20, \quad S_2 = 25, \quad M= 200, \quad \lambda_1 = 3, \lambda_2 = 4, \quad \lambda_D = 2, \quad \mu = 3$  $h_R = 1.1, \quad h_D = 1.2, \quad k_R = 1.5, \quad k_d = 1.3 \quad g_R = 2.1, \quad g_D = 2.2, \quad C_o = 2.3$ 

The cost for different reorder level are given by

Table 1: Total Expected Cost Rate as a Function S<sub>1</sub>, S<sub>2</sub> and Q

|   | <i>s</i> <sub>1</sub> | 2        | 3        | 4       | 5*        | 6        | 7       | 8        |
|---|-----------------------|----------|----------|---------|-----------|----------|---------|----------|
|   | <i>s</i> <sub>2</sub> | 3        | 4        | 5       | 6*        | 7        | 8       | 9        |
| Γ | $Q = (Q_{1,+}Q_2)$    | 40       | 38       | 36      | 34        | 32       | 30      | 28       |
|   | $TC(s_1, s_2 Q)$      | 115.7454 | 105.8264 | 90.5506 | 87.90082* | 94.28986 | 110.392 | 123.6665 |

For the inventory capacity S, the optimal reorder level s\* and optimal cost TC ( $s_1$ ,  $s_2$ , Q) are indicated by the symbol \*. The Convexity of the cost function is given in the graph.

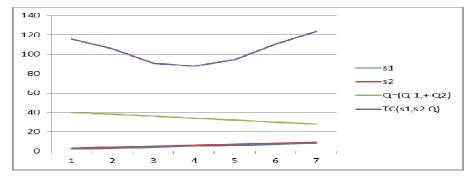


Figure 1: Total Expected Cost Rate as a Function TC (S<sub>1</sub>, S2, Q), S<sub>1</sub>, S<sub>2</sub> and Q

#### **1.1. Sensitivity Analysis**

The effect of changes in Demand rate at retailer node for product 1 and 2.

Table 2: Total Expected Cost Rate as a Function When Demand Increases

|                  | $\lambda_2 = 8$ | $\lambda_2 = 10$ | $\lambda_2 = 12$ | $\lambda_2 = 14$ | $\lambda_2 = 16$ |
|------------------|-----------------|------------------|------------------|------------------|------------------|
| $\lambda_1 = 12$ | 45.073539       | 46.419603        | 47.214733        | 47.629158        | 47.785721        |
| $\lambda_1 = 14$ | 46.271834       | 47.617898        | 48.413028        | 48.827452        | 48.984016        |

| $\lambda_1 = 16$ | 47.136498 | 48.482562 | 49.277692 | 49.692117 | 49.848680 |
|------------------|-----------|-----------|-----------|-----------|-----------|
| $\lambda_1 = 18$ | 47.793130 | 49.139194 | 49.934324 | 50.348749 | 50.505312 |
| $\lambda_1 = 20$ | 48.325884 | 49.671948 | 50.467078 | 50.881502 | 51.038066 |

The graph of the demand rate variation is given below and it describes, if the demand rate increases then the total cost also increases.

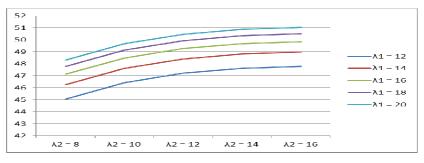


Figure 2: TC (S<sub>1</sub>, S2, Q) for Different Demand Rates

Table 3: Total Expected Cost Rate as a Function When S<sub>1</sub> and S<sub>1</sub> Increases

|                    | S <sub>1</sub> =2 | S <sub>1</sub> =4 | S <sub>1</sub> =6 | S <sub>1</sub> =8 | S <sub>1</sub> =10 |
|--------------------|-------------------|-------------------|-------------------|-------------------|--------------------|
| S <sub>1</sub> =45 | 111.998164        | 118.761642        | 124.799813        | 130.664478        | 136.843108         |
| S <sub>1</sub> =50 | 118.699318        | 124.359054        | 129.299781        | 133.996082        | 138.773110         |
| S <sub>1</sub> =55 | 123.090318        | 127.562168        | 131.434202        | 135.090008        | 138.765317         |
| S <sub>1</sub> =60 | 125.576395        | 129.128145        | 132.243072        | 135.192545        | 138.137225         |
| S <sub>1</sub> =65 | 126.984419        | 130.065937        | 132.851239        | 135.511516        | 138.145444         |

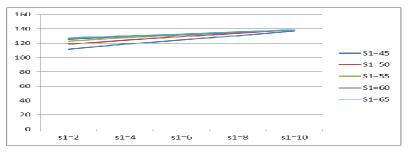


Figure 3: TC (S<sub>1</sub>, S2, Q) For Different S<sub>1</sub> and S<sub>1</sub> Values

From the graph it is identified that the total cost increases when the s and S increases.

Table 4: Total Expected Cost Rate as a Function When  $S_1$  and  $S_2$  Increases

|                    | S <sub>2</sub> =30 | S <sub>2</sub> =35 | S <sub>2</sub> =40 | S <sub>2</sub> =45 | S <sub>2</sub> =50 |
|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| S <sub>1</sub> =20 | 189.8666           | 179.2934           | 165.6356           | 152.2989           | 141.219            |
| S <sub>1</sub> =25 | 195.0113           | 186.1366           | 173.264            | 159.6361           | 147.8542           |
| S <sub>1</sub> =30 | 199.5703           | 192.4455           | 180.7208           | 167.1007           | 154.6623           |
| S <sub>1</sub> =35 | 203.6145           | 198.1655           | 187.8799           | 174.6251           | 161.6628           |
| S <sub>1</sub> =40 | 207.2345           | 203.2862           | 194.623            | 182.1144           | 168.8466           |

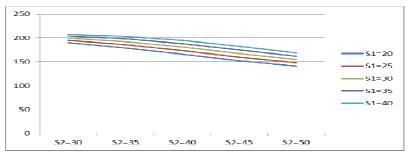


Figure 4: TC (S<sub>1</sub>, S2, Q) for Different S<sub>1</sub> and S<sub>2</sub> Values

From the graph it is identified that the total cost decrease when S2 increases and increases when S1 increases

|                       | h <sub>D</sub> =0.04 | h <sub>D</sub> =0.08 | h <sub>D</sub> =0.12 | h <sub>D</sub> =0.16 | h <sub>D</sub> =0.20 |
|-----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| $h_R = 0.002$         | 43.1924942           | 43.87908             | 44.5655              | 45.25206             | 45.93862             |
| h <sub>R</sub> =0.004 | 43.2037231           | 43.89028             | 44.5767              | 45.26326             | 45.94982             |
| h <sub>R</sub> =0.006 | 43.2149519           | 43.90148             | 44.58804             | 45.27446             | 45.96102             |
| $h_R = 0.008$         | 43.2261794           | 43.91268             | 44.59924             | 45.28566             | 45.97222             |
| $h_{R}=0.010$         | 43.2374082           | 43.92388             | 44.61044             | 45.297               | 45.98342             |

Table 5: Total Expected Cost Rate When  $\mathbf{H}_{r}$  and  $\mathbf{H}_{d}$  Increases

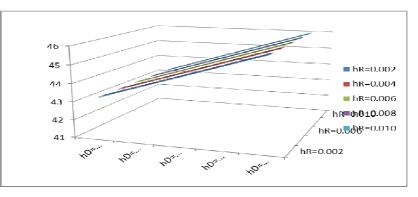


Figure 5: TC (S<sub>1</sub>, S2, Q) for Different H<sub>r</sub> and H<sub>d</sub> Values

As is to be expected the graph shows that the total cost increases when  $h_R$  and  $h_D$  increases

Table 6: Total Expected Cost Rate When  $G_{\rm r}\,and\,K_{\rm d}$  Increases

|                    | g <sub>R</sub> =0.2 | g <sub>R</sub> =0.4 | g <sub>R</sub> =0.6 | g <sub>R</sub> =0.8 | g <sub>R</sub> =1.0 |
|--------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| k <sub>D</sub> =10 | 32.346268           | 33.06786            | 33.78945            | 34.51104            | 35.23264            |
| k <sub>D</sub> =15 | 34.204663           | 34.926255           | 35.64785            | 36.36944            | 37.09103            |
| k <sub>D</sub> =20 | 36.063058           | 36.78465            | 37.50624            | 38.22783            | 38.94943            |
| k <sub>D</sub> =25 | 37.921453           | 38.643045           | 39.36464            | 40.08623            | 40.80782            |
| k <sub>D</sub> =30 | 39.779848           | 40.50144            | 41.22303            | 41.94462            | 42.66622            |

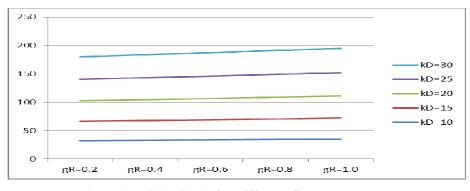


Figure 6: TC (S<sub>1</sub>, S2, Q) for Different G<sub>R</sub> and K<sub>D</sub> Values

As is to be expected the graph shows that the total cost increases when  $g_R$  and  $k_D$  increases.

## 6. CONCLUSIONS

This paper deals with a two echelon Inventory system with two The demand at retailer node follows independent Poisson with rate  $\lambda_1$  and  $\lambda_2$ . The Joint replenishment ordering policy is applied at retailer node. The direct demand at distributor is assumed to be Poisson with rate  $\lambda_D$ . The structure of the chain allows vertical movement of goods from to supplier to Retailer. If there is no stock for product at retailer the demand is refused and it is treated as lost sale. The model is analyzed within the framework of Markov processes. Joint probability distribution of inventory levels at DC and Retailer for both products are computed in the steady state. Various system performance measures are derived and the long-run expected cost is calculated. By assuming a suitable cost structure on the inventory system, we have presented extensive numerical illustrations to show the effect of change of values on the total expected cost rate. It would be interesting to analyze the problem discussed in this paper by relaxing the assumption of exponentially distributed lead-times to a class of arbitrarily distributed lead-times using techniques from renewal theory and semi-regenerative processes. Once this is done, the general model can be used to generate various special eases.

# REFERENCES

- 1. Anbazhagan N, Arivarignan G. Two-commodity continuous review inventory system with Coordinated reorder policy. International Journal of Information and Management Sciences. 2000; 11(3): 19 30.
- 2. Anbazhagan N, Arivarignan G. Analysis of two-commodity Markovian inventory system with lead time. The Korean Journal of Computational and Applied Mathematics. 2001; 8(2): 427-438.
- 3. Axsater, S. (1993). Exact and approximate evaluation of batch ordering policies for two level inventory systems. Oper. Res. 41. 777-785.
- Benita M. Beamon. (1998). Supply Chain Design and Analysis: Models and Methods. International Journal of Production Economics. Vol.55, No.3, pp.281-294.
- 5. Cinlar .E, Introduction to Stochastic 'Processes, Prentice Hall, Engle-wood Cliffs, NJ, 1975
- Clark, A. J. and H. Scarf, (1960). Optimal Policies for a Multi- Echelon Inventory Problem. Management Science, 6(4): 475-490.
- 7. Gross, D. and Harris C. M. (1971), On one for one ordering inventory policies with state dependent lead times, Operations Research, 19, 735-760.

- 8. Hadley, G and Whitin, T. M., (1963), Analysis of inventory systems, Prentice- Hall, Englewood Cliff.
- 9. Thangaraj, V. and R. Ramanarayanan (1983). An Operating Policy in Inventory Systems with Random Lead Times and Unit Demands, Math. Operations for Sch. U. Statist. Ser.Optim. 14, 111 124.
- 10. Veinott AF, Wagner H.M. Computing optimal (s, S) inventory policies. Management Science. 1965;11:525-552.
- 11. Yadavalli V.S.S. and J. W. Jourbet, "A two-product single period manufacturing and supply system," Journal of the Southern African Institute for Management Scientist, vol. 12, no. 2, pp. 34–39, 2003.
- 12. Yadavalli, V.S.S., C. de w van Schoor, and S. Udayabaskaran, "A substitutable two-product inventory system with joint-ordering policy and common demand," Applied Mathematics and Computation, vol. 172, no. 2, pp. 1257–1271, 2006.